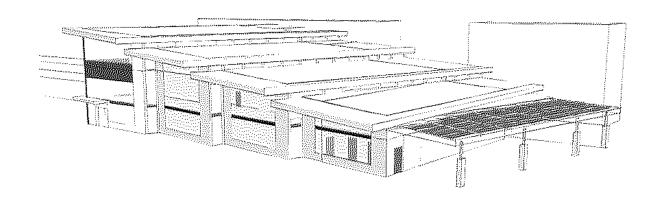
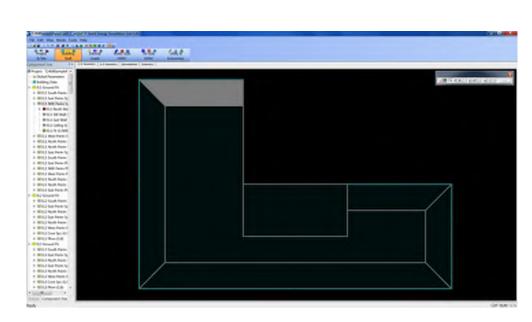
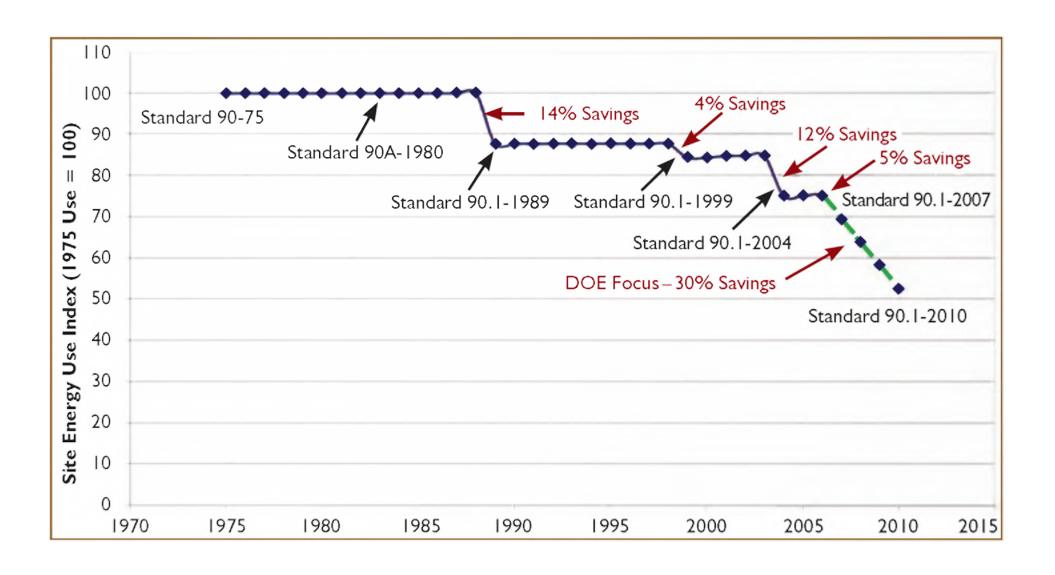

Taking the "garbage" out of energy modeling through calibration

Presented to the Madison Chapter of ASHRAE February 8, 2016

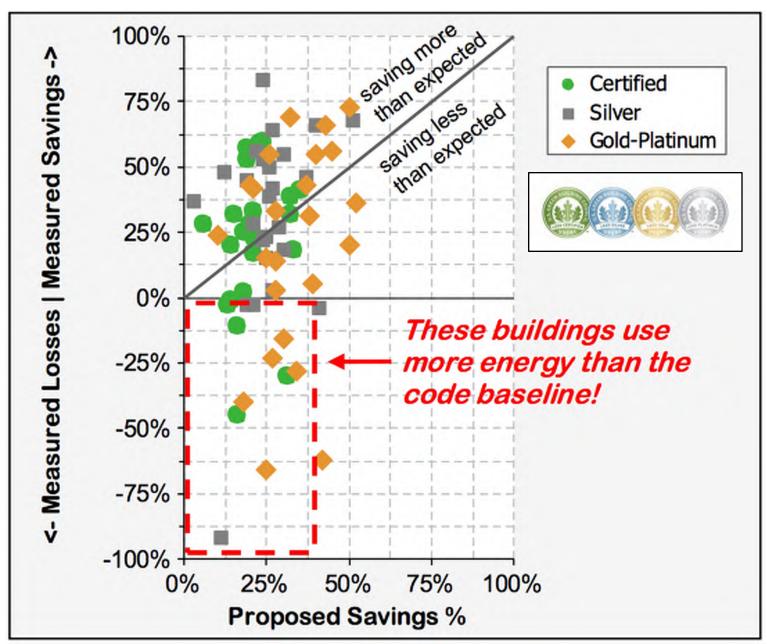

Presented by Benjamin Skelton P.E. BEMP President, Cyclone Energy Group


Acknowledgments

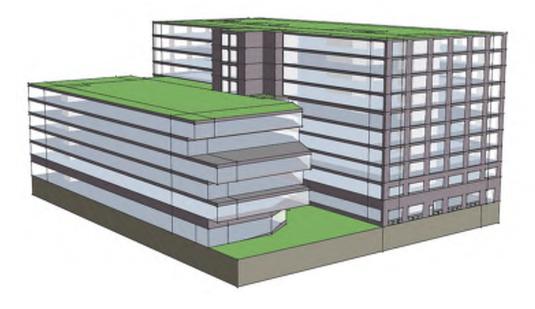
- Jason Robbin Walgreen Co
- Nathan Kegel IES
- Irina Susorova Cyclone Energy Group
- Igor Seryapin Cyclone Energy Group
- Joanne Choi Cyclone Energy Group



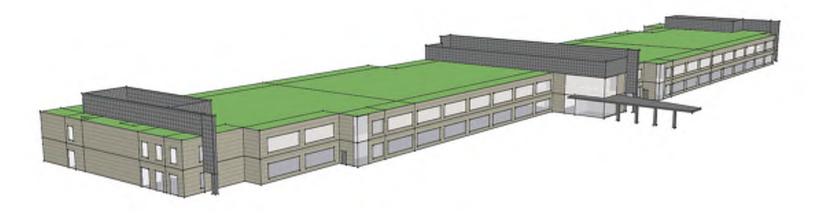
Agenda


- Do You Know Your Energy Modeling Basics?
- Why Do We Need Calibrated Energy Models?
- How Do You Calibrate A Model Without Losing Years of Your Life?
- A Real World Example
- Questions

History of 90.1 Performance



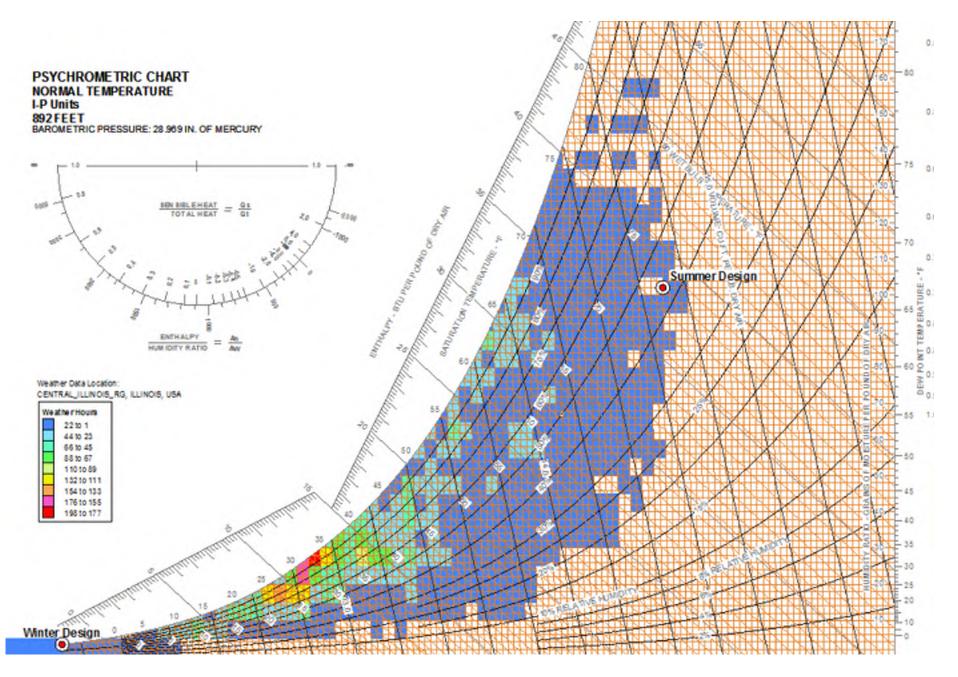
How accurate are energy models?



Source: NBI Energy Performance of LEED for New Construction

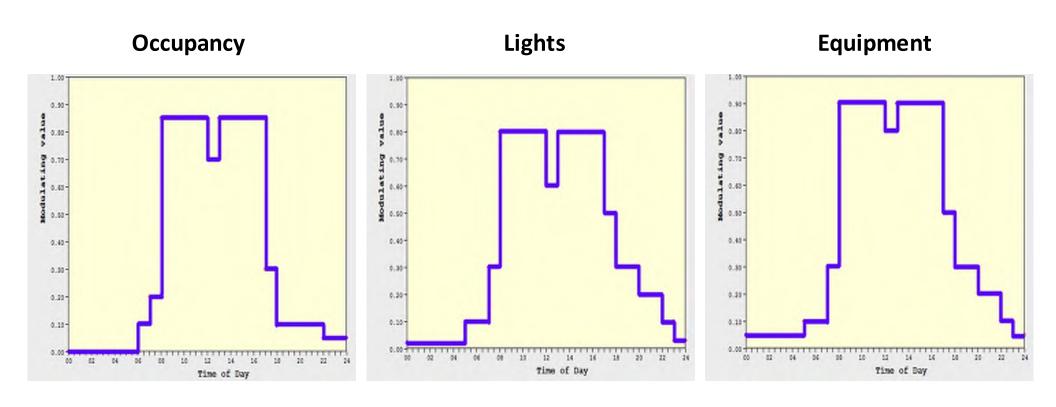
- A model is a device or structure that helps us:
 - Understand the world around us,
 - Understand a piece of the world around us,
 - A simplified representation of our surroundings in order that we may pursue understanding

- Can be simple or complex
- Can be time consuming
- Both an art and a science
- Only as good as the person creating the model
- Not the same as a load model!



2009 ASHRAE Handbook - Fundamentals (IP)

© 2009 ASHRAE, Inc.

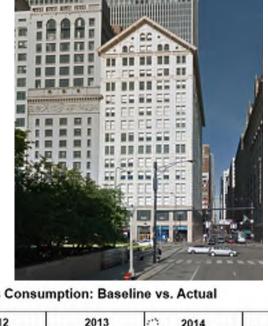

MADISON DANE CO REGIONAL ARPT, WI, USA WMO#: 726410 Lat: 43.14N Long: 89.35W 866 StdP: 14.24 Time Zone: -6.00 (NAC) Period: 82-06 Elev: WBAN: 14837 Annual Heating and Humidification Design Conditions Humidification DP/MCDB and HR Coldest month WS/MCDB MCWS/PCWD Coldest Heating DB 99.6% 0.4% to 99.6% DB Month 99.6% 99% DP HR MCDB DP HR MCDB WS MCDB WS MCDB MCWS PCWD -2.9 -18.1 2.1 -7.6 -12.13.0 -1.5 24.8 18.7 8.1 300 1 -9.1 26.9 20.0 n, and Enthalpy Design Conditions Annual C Evaporation WB/MCDB Hottest Cooling DB/MCWB MCWS/PCWD Hottest Month 0.4% 1% 2% 0.4% 1% 2% to 0.4% DB Month MCWB MCWB MCWB MCDB WB DB Rand DB DB DB WB WB MCDB MCDB MCWS PCWD 7 20.0 89.8 74.4 86.8 77.1 73.2 72.8 84.0 71.1 86.4 75.0 83.5 81.3 11.4 180 Dehumidification DP/MCDB and HR Enthalpy/MCDB Hours. 0.4% 2% 0.4% 2% 8 to 4 & 1% DP HR MCDB DP HR MCDB DP HR MCDB MCDB MCDB MCDB Enth Enth Enth 55/69 74.0 131.0 83.5 72.2 123.0 80.7 70.4 115.7 78.4 41.1 86.1 39.0 83.7 37.3 81.5 636 **Extreme Annual Design Conditions** Extreme Annual DB n-Year Return Period Values of Extreme DB Extreme Extreme Annual WS Max Mean Standard deviation n=5 years n=10 years n=20 years n=50 years 1% 2.5% 5% WB Min Min Max Max Min Max Min Max Min Max Min Max 23.6 20.2 18.3 84.7 -15.394.2 7.2 3.2 -20.596.5 -24.898.4 -28.8100.2 -34.0102.6

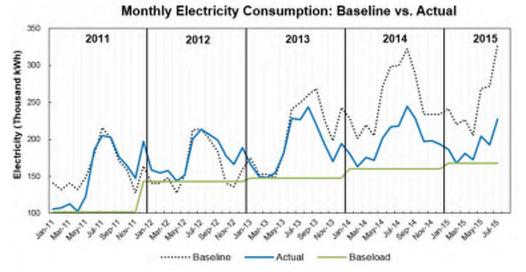
How is it different than a load model?

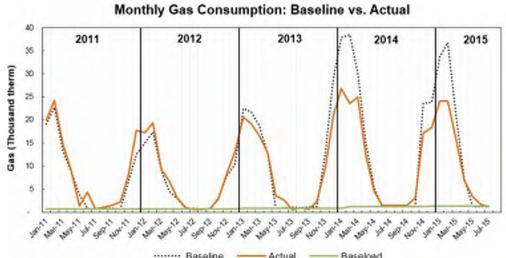
How is it different than a load model?

Scheduled Pattern of Use

- Input variables
 - Controllable variables (e.g. internal gains)
 - Uncontrollable variables (e.g. weather)
- System structure & parameters/properties
 - Physical description (e.g. thermal properties)
- Output
 - Response variables

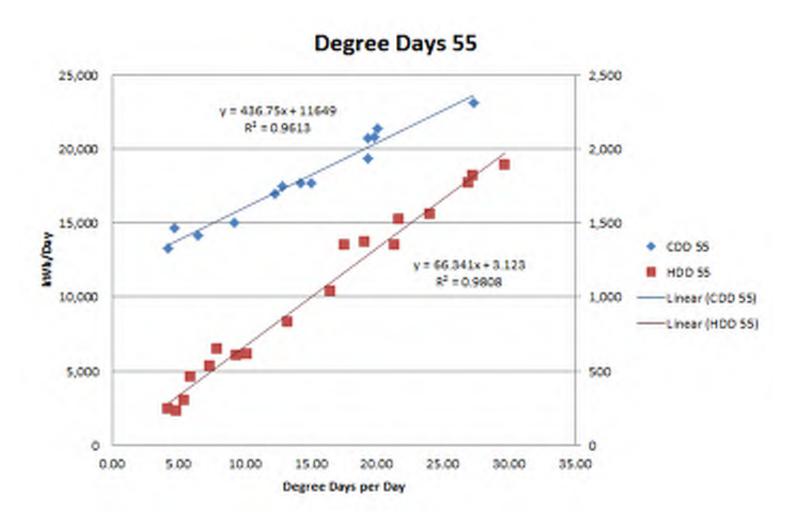

^{*}Fundamentals Handbook 2013 - Chapter 19


- Two types of energy models:
 - Data-driven Modeling (Existing Building)
 - Forward Modeling (Design)


^{*}Fundamentals Handbook 2013 - Chapter 19

What is a *Data-Driven* Model?

- Input & output variables are known and measured, the objective is to create a mathematical description of the system and estimate parameters.
 - Steady State System Modeling Methods:
 - BIN Method
 - Degree Day
 - Regression



*Fundamentals Handbook 2013 - Chapter 19

Degree Day Analysis

- R² = 1.00 Perfect correlation (idealistic)
- Recommendations
 - Performance Measurement Protocols for Commercial Buildings (PMP)
 - $R^2 > 0.80$
 - International Performance Measurement & Verification Protocol
 - $R^2 > 0.75$

Regression

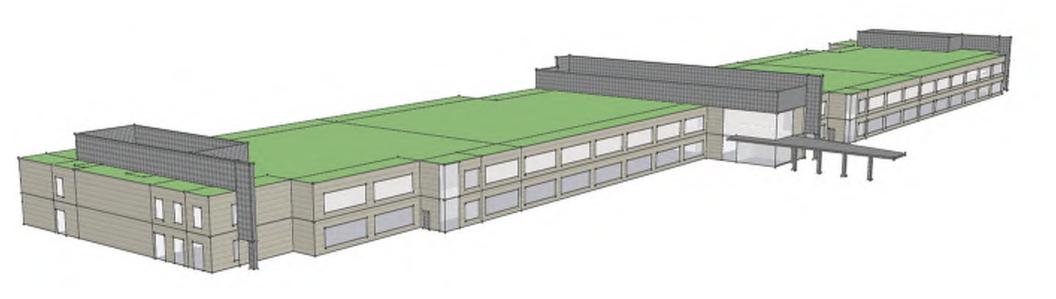
BIN Calculation

FILL OUT CELLS IN YELLOW

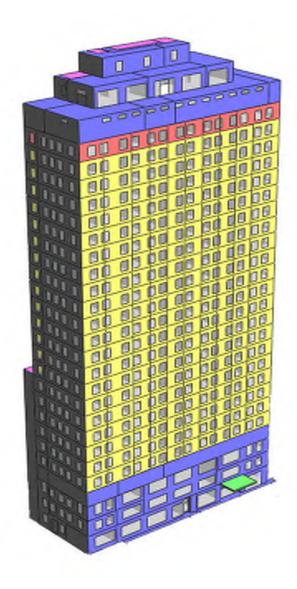
				Filter Effic	iency Data		Motor Data				
I			Existing	Existing	V-bank	V-bank					
	Number	CFM per	Pre-filter	Filter	Filter	Filter	Supply	Fan	Motor	Drive	Overall
	of Filters	filter	Final	Final	Initial	Final	Motor HP	Efficiency	Efficiency	Efficiency	Efficiency
			Resistance	Resistance	Resistance	Resistance					
	60	1,604	1.25	1.00	0.17	1.50	150	60.00%	94.50%	98.00%	55.57%

Consumption Summary										
Current kWh	Proposed kWh	kWh Savings	kW Savings							
82,470	43,864	38,606	104.6							

43.864.4


Cooling
Indermediate / Economizer
Heating

62,470.2									43,004.4						
								EXIST	TING CONDIT	TIONS	PROP	OSED CONDI	TIONS	38,606	104.64
	CHICAGO WEATHER DATA 2° BINS			Supply Fan	Exhaust	Airflow	Airflow	Initial SP	Average	Fan Energy	Initial SP	Average SP	Fan Energy	kWh	kW
_			Power	Fan Power	(CFM)	per Filter	Existing	SP Existing	(Existing)	Proposed	Proposed	(Proposed)	Savings	Savings	
From	То	Midpoint	Hours												
94	96	95	0												
92	94	93	12	158.07	23.22	96,234	1,604	0.69	1.21	294.9	0.19	0.63	153.8	141.1	11.76
90	92	91	24	157.04	23.30	95,608	1,593	0.68	1.20	584.2	0.19	0.63	304.9	279.3	11.64
88	90	89	40	156.01	23.39	94,982	1,583	0.68	1.20	964.4	0.19	0.63	503.9	460.5	11.51
86	88	87	65	154.98	23.47	94,357	1,573	0.67	1.20	1,552.3	0.19	0.63	812.0	740.3	11.39
84	86	85	75	153.96	23.56	93,731	1,562	0.67	1.19	1,773.9	0.19	0.62	928.9	845.0	11.27
82	84	83	81	152.93	23.64	93,105	1,552	0.66	1.19	1,897.3	0.19	0.62	994.6	902.7	11.15
80	82	81	98	151.90	23.72	92,480	1,541	0.65	1.19	2,273.2	0.18	0.62	1,192.9	1,080.3	11.02
78	80	79	127	150.87	23.81	91,854	1,531	0.65	1.18	2,917.2	0.18	0.62	1,532.5	1,384.7	10.90
76	78	77	80	149.84	23.89	91,228	1,520	0.64	1.18	1,819.6	0.18	0.62	956.9	862.7	10.78
74	76	75	184	148.82	23.98	90,603	1,510	0.64	1.18	4,143.8	0.18	0.62	2,181.5	1,962.2	10.66
72	74	73	228	147.79	24.06	89,977	1,500	0.63	1.17	5,083.7	0.18	0.62	2,679.3	2,404.4	10.55
70	72	71	137	146.76	24.14	89,351	1,489	0.63	1.17	3,024.2	0.17	0.62	1,595.6	1,428.6	10.43
68	70	69	155	145.73	24.23	88,725	1,479	0.62	1.16	3,387.2	0.17	0.62	1,789.1	1,598.1	10.31
66	68	67	101	144.71	24.31	88,100	1,468	0.62	1.16	2,184.9	0.17	0.61	1,155.3	1,029.6	10.19
64	66	65	113	142.36	23.32	86,670	1,444	0.60	1.15	2,387.9	0.17	0.61	1,265.9	1,122.0	9.93
62	64	63	112	145.86	24.92	88,800	1,480	0.62	1.17	2,450.5	0.17	0.62	1,294.2	1,156.3	10.32
60	62	61	124	143.97	24.83	87,652	1,461	0.61	1.16	2,662.9	0.17	0.61	1,409.2	1,253.7	10.11
58	60	59	39	137.27	24.29	83,572	1,393	0.58	1.14	782.5	0.16	0.61	417.2	365.3	9.37
56	58	57	100	134.00	24.35	81,580	1,360	0.56	1.12	1,939.0	0.15	0.60	1,037.6	901.5	9.01
54	56	55	137	137.02	24.97	83,421	1,390	0.58	1.13	2,741.8	0.16	0.61	1,462.1	1,279.7	9.34
52	54	53	100	139.36	25.94	84,845	1,414	0.59	1.14	2,050.0	0.16	0.61	1,090.4	959.6	9.60
			,,			,	_,			-,		1	_,_,_,		


82,470,2

What is a *Forward* Model?

 Predict the output variables of a model based on known parameters and specified input variables.

Computer Simulation Models

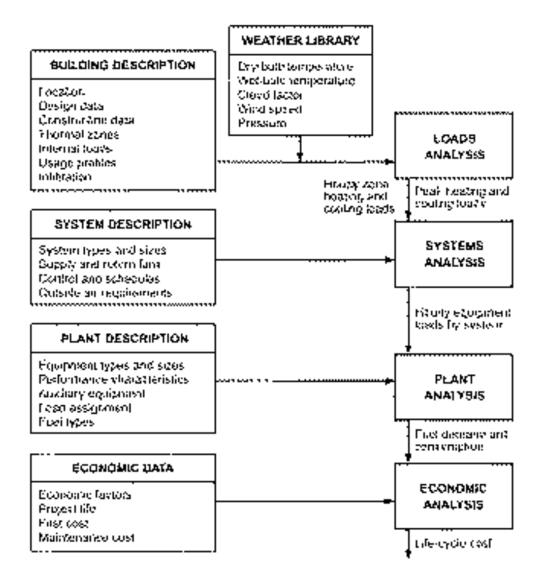
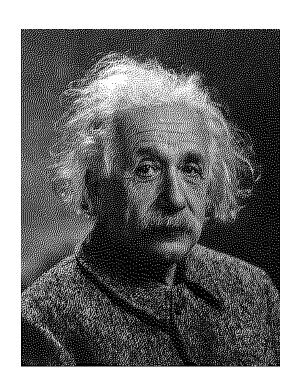
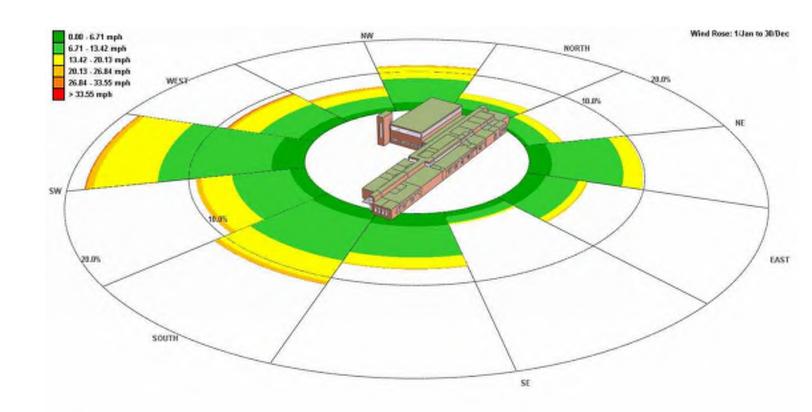
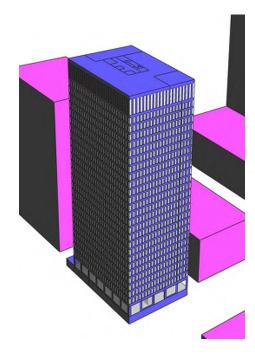



Fig. 1 Flow Chart for Building Energy Simulation Program (Acres and Stammer 1995)


Albert Einstein

"Everything should be made as simple as possible, but not simpler"


What do you want to accomplish?

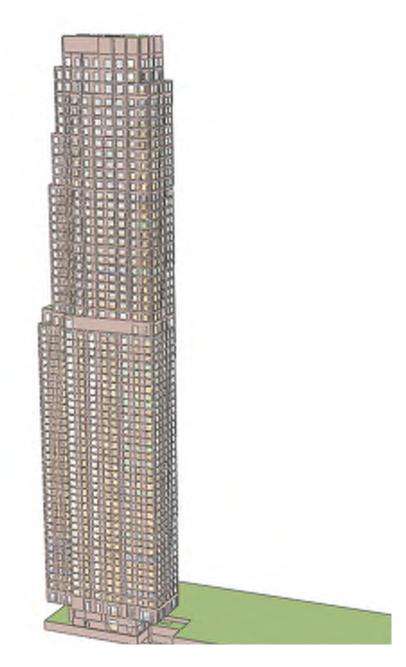
- Verify a design model?
- Identify potential?

How to create a calibrated model?

- An existing building, no previous model created
- A newly built building, with design energy model created

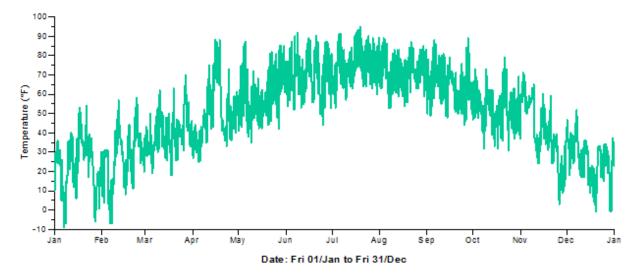
How to create a calibrated model?

- Input variables
 - Controllable variables (e.g. internal gains)
 - Uncontrollable variables (e.g. weather)
- System structure & parameters/properties
 - Physical description (e.g. thermal properties)
- Output
 - Response variables

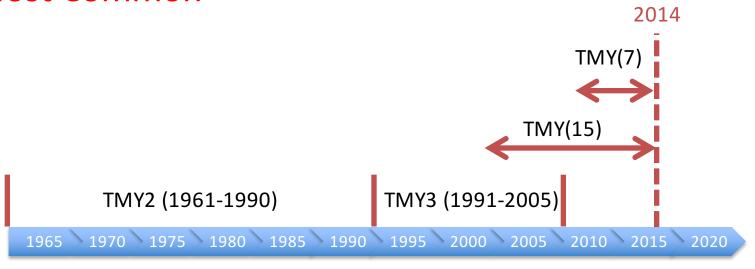

^{*}Fundamentals Handbook 2013 - Chapter 19

How to model an operating building?

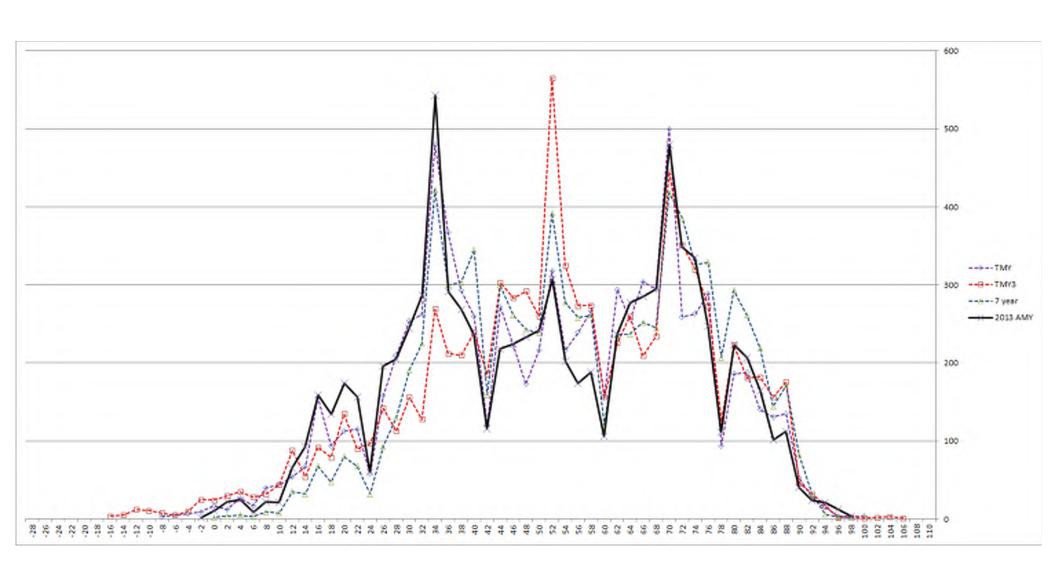
- Building Assessment
 - Data collection
 - Nameplates
 - Schedules of operation
 - Operating setpoints
 - Spot Measurements
 - Amp draw from constant speed loads
 - Air / water flow measurements
 - Building characteristics (e.g. thermal performance)
 - Trend data
 - Variable speed equipment trending (>10 min intervals)
 - Weather!


How to model an operating building

- Unknown variables
 - Infiltration
 - Occupancy (can be measured)


Weather (8,760)

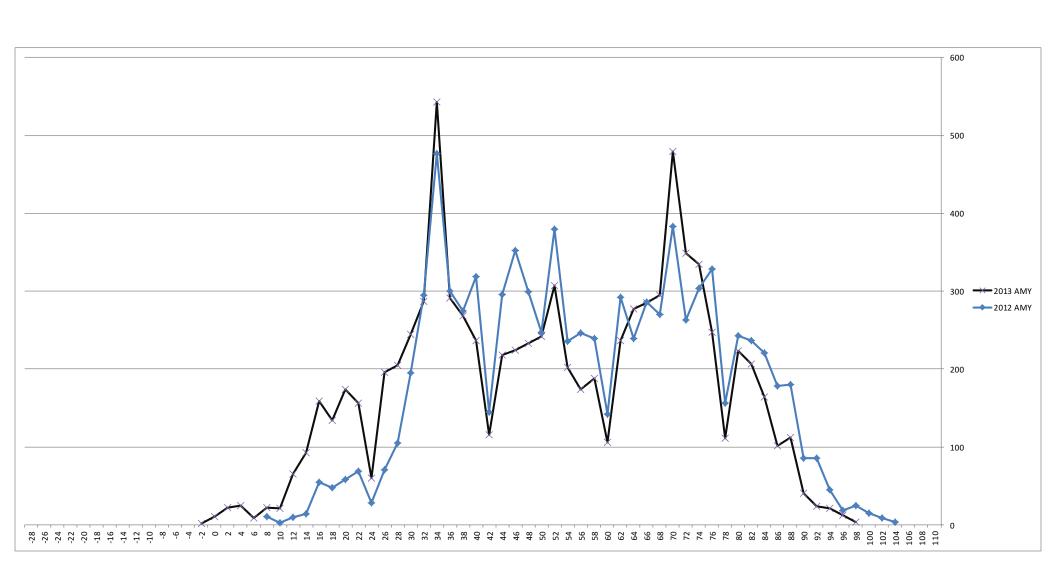
- Dry-bulb temperature
- Wet-bulb temperature
- External dew-point temperature
- Wind speed
- Wind direction
- Direct radiation
- Diffuse radiation
- Global radiation
- Solar altitude
- Cloud cover
- **Atmospheric pressure**
- External relative humidity
- External moisture content



What weather file should you use?

- TMY (Typical Meteorological Year)
- TMY2 Most Common
- TMY3
- IWEC
- CWEC
- TRY
- DSY
- TMY(7)
- TMY(15)
- AMY

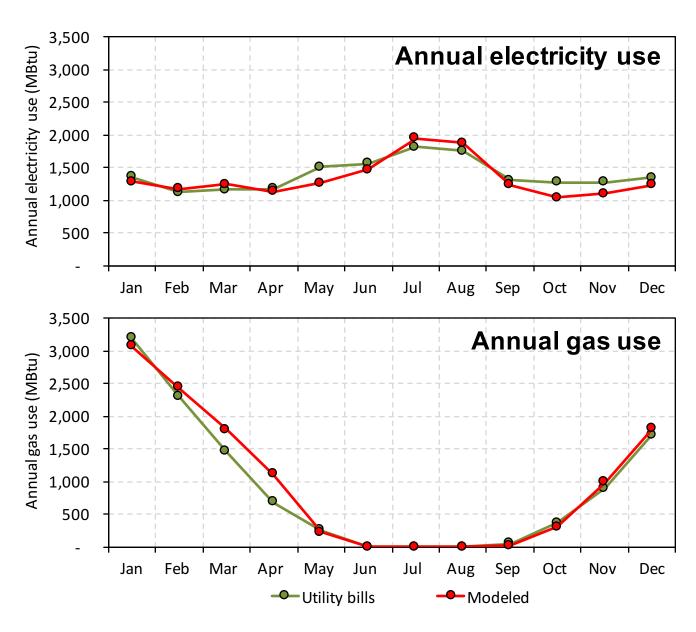
TMY & Shifting Weather Data

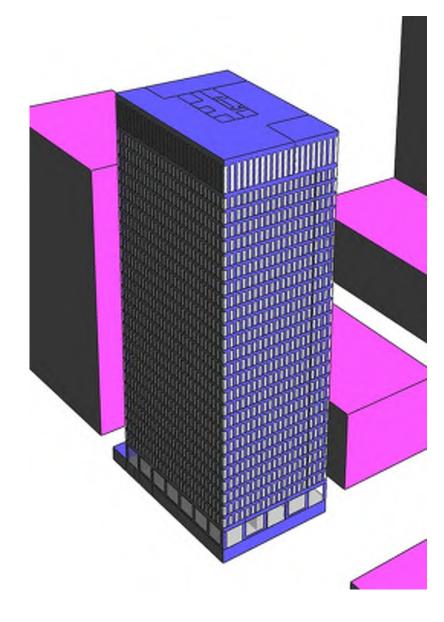

Understanding TMY

KMDW	Year(s)	Mean T	Median T	Max T	Min T	Mean h	Median h	Max h	Min h
TMY	1948-1980	50.86	51.98	98.96	-9.94	18.99	17.90	41.77	-2.07
TMY 3	1991-2005	52.49	53.60	104.00	-17.14	19.85	19.13	42.00	-3.88
7 Year	2007-2013	55.06	55.40	96.80	-0.40	20.72	19.36	46.94	0.54
2012	2012	55.70	55.40	102.20	6.80	20.48	19.36	46.94	2.16
2013	2013	50.63	51.80	96.80	-2.20	18.92	18.02	45.06	0.10

	Current kWh	Proposed kWh	kWh Savings
TMY	369,988	313,558	56,430
TMY 3	361,269	308,529	52,740
7 year	370,957	319,067	51,890
2012	373,992	320,868	53,124
2013	373,256	317,322	55,933

- Increasing average/median temperature
- Increasing average/median enthalpy
- No year is "typical"


Actual Meteorological Year: 2012 vs. 2013

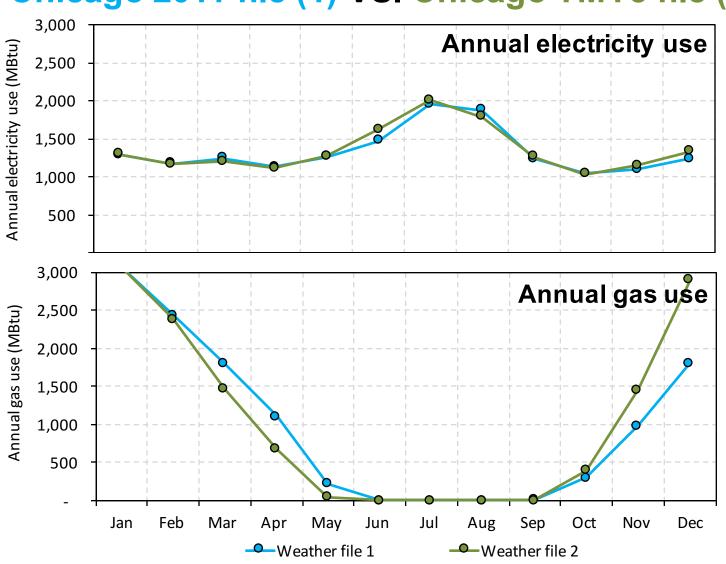

How accurate are energy models?

- ASHRAE Guideline 14-2002
- ASHRAE Standard 140-2011
- International Performance Measurement & Verification Protocol (IPMPV)
 - Normalized Mean Bias Error (NMBE)
 - 5% with Monthly Data
 - 10% with Hourly Data
 - Coefficient of Variation of the Root Mean Square Error (CVRMSE)
 - 15% with Monthly Data
 - 30% with Hourly Data

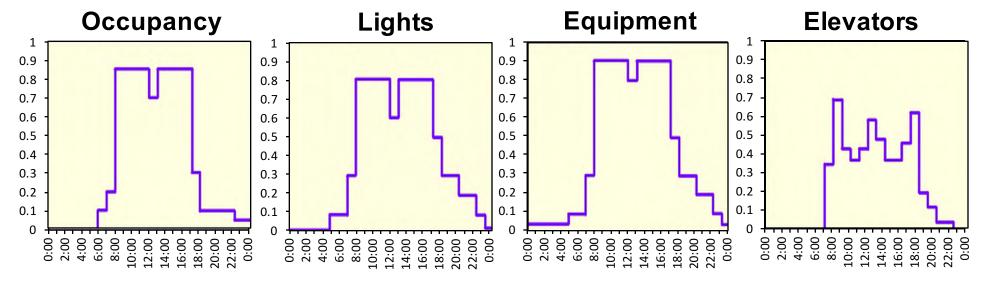
Calibrated model results

Model assumptions

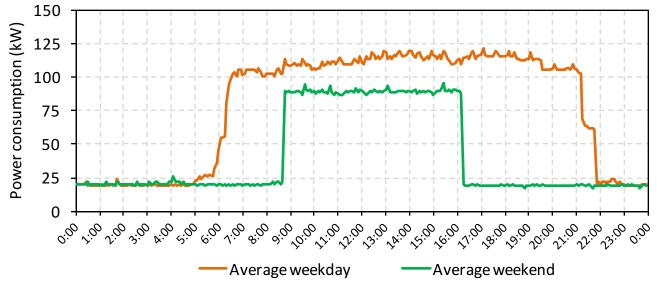
Known:

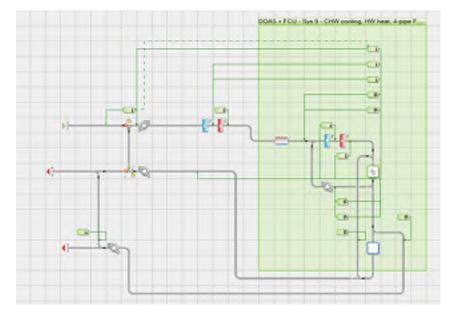

- Building context and surrounding buildings
- Building geometry
- Envelope materials
- Room temperature settings
- HVAC system components and capacities
- Spot measurements

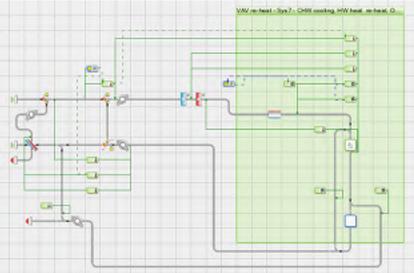
Unknown:


- Individual floor tenants' layouts
- Energy usage profiles (occupancy, lighting, equipment schedules)
- Weather data and microclimate
- HVAC system settings and performance
- Air infiltration rates

Importance of selecting right weather data


Chicago 2011 file (1) VS. Chicago TMY3 file (2)


Daily energy usage profiles

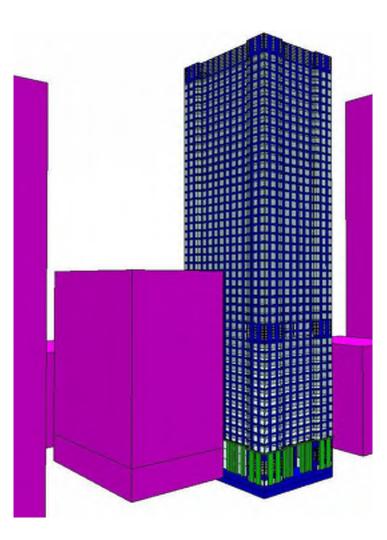


Actual daily energy use profile (from ComEd Energy Insights)

HVAC systems

- 7 HVAC systems with air handling units:
 - Serving south perimeter zones
 - Serving east, west, & north perimeter zones
 - Serving central core zones
 - 1 unit serving the main lobby
 - 1 unit serving retail zones (no information available)
- 1,200 fan coil units
- 2 steam boilers (10,000 MBH each)
- 2 chillers (500 tons each)
- 1 cooling tower

Energy savings results


	Existing	Window 1	Window 2	Window 3
Energy use				
Electricity (kBtu/year)	15,401,917	15,157,815	15,135,081	15,142,421
Gas (kBtu/year)	11,740,434	7,877,407	7,397,939	7,537,130
Total (kBtu/year)	27,142,351	23,035,221	22,533,019	22,679,551
Electricity savings (%)		2%	2%	2%
Gas savings (%)		33%	37%	36%
Total savings (%)		15%	17%	16%
Energy use intensity (kBtu/ft²)	75.5	64.1	62.7	63.1
Energy cost				
Electricity (\$/year) ¹	478,920	471,330	470,623	470,851
Gas (\$/year) ²	79,350	53,241	50,001	50,941
Total (\$/year)	558,271	524,571	520,624	521,793
Total savings (\$)		33,699	37,647	36,478
Total savings (%)		6%	7%	7%
Total savings (\$/ft²)		0.09	0.10	0.10

 $^{^{1}}$ 625 N. Michigan blended electricity tariff: 0.11 $\$ /kW-hr as of 2011

Resources

- Reference Materials:
 - ASHRAE Handbook Fundamentals 2013
 - Chapter 19
 - ASHRAE Guideline 14-2002
 - ASHRAE Standard 55-2010
 - ASHRAE Standard 62.1-2007 / 2010
 - ASHRAE Standard 90.1-2007 / 2010 / 2013
 - ASHRAE Standard 100-2006
 - ASHRAE Standard 140-2011
 - Energy Information Administration (Average Utility Data)
 - EPA Target Finder
 - International Energy Conservation Code 2012
 - IESNA Lighting Handbook, 9th Edition
 - IPMPV
 - Building Energy Modeling An ASHRAE Certification Study Guide
- Software:
 - DOE Approved Software
 - eQuest (Free)
 - Trane Trace 700 (30-day Trial)
 - <u>IES<VE></u> (30-day Trial)
- Weather Data:
 - ENERGY PLUS Weather Files
 - Degree Days.net
 - NREL (<u>TMY2</u> / <u>TMY3</u>)
 - Weather Analytics

