Introduction to ASHRAE SPC 191

Standard for the Efficient Use of Water in Building Mechanical Systems

Fred Betz
Affiliated Engineers, Inc.
Madison, WI
fabetz@aeieng.com
www.aeieng.com
Introduction

- Fred Betz, PhD. LEED AP BD+C
- Chair ASHRAE standard 191 (2015 – present)
- Co-Chair ASHRAE Technical Committee 2.8 Energy:Water Nexus Subcommittee (2015 – present)
- Senior Sustainable Design Consultant at Affiliated Engineers, Inc. Madison, WI (2009 to present)
Agenda

- Purpose and Scope
- Development History – 8 years and counting
- Mechanical
- Process
- Water Balance
- Appendix A & B
Purpose and Scope

• The purpose of this standard is to provide minimum requirements for the design of building mechanical systems that limit the volume of water required to operate HVAC systems.

• This standard provides minimum criteria that:
 • Apply to new buildings and renovation projects (new portions of buildings and their systems) and the surrounding site: a building or group of buildings that utilize a single submittal for a construction permit or which are within the boundary of a contiguous area under single ownership.
 • Addresses water consumption through the concept of water use efficiency implemented during design and construction of residential, commercial, institutional, and industrial projects.
 • The provisions of this standard do not apply to:
 • Storm or building waste water management, except as a means of reducing potable water use.
 • Industrial process systems.
Standard 191 History

• A panel was convened in the mid 2000’s to discuss creating a comprehensive standard to cover all aspects of water use in the built environment.

• Co-sponsors include: ASHRAE, ASPE, AWWA, USGBC

• Logistical issues and a lack of urgency and leadership led to the standard having limited development and little consensus.
 • No trade association “owns” water.
 • Less than 1/3 of committee membership were ASHRAE members.
 • Base versus stretch standard.
 • Water wasn’t politically/financially important.
Timeline

• SPC 191P formed: 2008

• First public review: 2012

• Title, Purpose, Scope change: 2015

• First public review: Summer 2016
 • Submit paper work by May 20th.
Scope Change

<table>
<thead>
<tr>
<th>Before 2015</th>
<th>After 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Landscape</td>
<td>• Mechanical</td>
</tr>
<tr>
<td>• Mechanical</td>
<td>• Process</td>
</tr>
<tr>
<td>• Plumbing</td>
<td>• Quantification</td>
</tr>
<tr>
<td>• Process</td>
<td>• Quantify but not regulate</td>
</tr>
<tr>
<td>• Quantification</td>
<td>landscape nor plumbing</td>
</tr>
</tbody>
</table>
Mechanical Water Highlights

• Water quality
 • Testing water to validate quality and compatibility with equipment.
 • Includes potable and non-potable
 • Water treatment plan

• Metering
 • Whole building potable and non-potable
 • Cooling towers, evaporative cooling, boilers and hot water heaters (thresholds)

• Equipment (cooling towers, evaporative systems, boilers, etc.)
Process Water Highlights

• Commercial Food Service, Commercial Laundry, Medical, Laboratory

• Identify gaps in current codes/standards and fill them, but don’t repeat or contradict other codes/standards

• Sampling of scope:
 • Animal watering system
 • Steam sterilizers
 • Dipper wells
 • Reverse osmosis
 • Lab sinks and washers
Water Balance

• Educating for users on usage volumes in less water stressed or low cost areas where there isn’t a big driver for water savings yet.

• Basis for more stringent codes, standards, and guidelines to build upon and set higher performance targets.

• Issues:
 • Water vs. water cost?
 • Sewage or potable water only?
 • Requirements for water stressed regions?
 • What defines a water stressed region?
Water Balance

Sources (partial list)
- Rainwater
- Air-conditioning condensate
- Reject water from reverse osmosis treatment systems and similar devices
- Graywater (water from showers and baths, clothes washers, and hand washing lavatories)
- Stormwater
- Cooling tower blowdown

Sinks (partial list)
- Cooling tower makeup (evaporation, blowdown, and drift)
- Humidification
- Landscape irrigation, including irrigation of vegetative roofs
- Plumbing fixtures
- Process water
- Any other end-uses
Appendix A: Water Usage Intensity

- Water Usage Intensity
 - Gallon per year per:
 - Square foot,
 - Patient bed,
 - Occupant, etc.

- Establish a target WUI value by building type and location based on previously measured data. (EPA, CBECS, etc.)

- Depending on scope designers may prefer to use target value approach to comply with Water Balance requirements.
Appendix B: Whole Building Water Model

Mechanical systems can be quantified with energy models
• Humidification & cooling coil condensation
 \[m_{Cond} = m_{airflow} \times \Delta HR \]
• Boiler Blowdown
 \[\dot{m}_{BD} \left[\frac{lb}{hr} \right] = \dot{Q}_{Steam} \left[\frac{Btu}{hr} \right] \times \frac{1}{h_{Steam} \left[\frac{Btu}{lb} \right]} \times f_{Blowdown} \]
• Cooling tower evaporation
 \[\dot{Q}_{water} = m_{water} \times c_P \times (T_{water,i} - T_{water,o}) \]
 \[\dot{m}_{CT-Water} = m_{CW} \times \Delta T_{Tower} \times b_{EVAPORATION} \left[\frac{gal}{hr} \right] \]
 \[V_{CONDENSER} \left[\frac{gal}{hr} \right] \times \Delta T_{COOLING-TOWER} \left[^\circ F \right] \times \frac{Btu}{lb - ^\circ F} \]
 \[= \frac{\Delta T_{COOLING-TOWER} \left[^\circ F \right] \times \Delta T_{CONDENSER} \left[^\circ F \right] \times \frac{Btu}{lb - ^\circ F}}{H_v \left[\frac{Btu}{lb} \right]} \]
References

Questions

Fred Betz
fbetz@aeieng.com
608-236-1175
@AEITweets