Advanced Coil Selection with Respect to Performance at Minimum Flow Conditions

Presented by: Gene Nelson, PE

November 12, 2018

Good Judgment

comes from experience.

Good Judgment

comes from experience.

Experience

comes from poor judgment.

LEARNING OBJECTIVES

- Why coil selections at low flow conditions are important
- Basic science regarding coil performance
- How to select coils
- How and When To Use Pumped Coils

EXPERIENCES

- Why Coil Selection is Important
- Basic Science
- Coil Selection
- Pumped Coils
- When fluid flow (air or liquid) in coils and heat exchangers is too low, laminar flow conditions can result.
- Laminar flow can result in:
 - Unpredictable Heat Transfer
 - Control Valve Hunting
 - Uneven Heating and Possible Freezing Conditions
 - Higher Water Side Flow, Lower ∆T's, and Higher Pumping Costs.
 - Comfort Issues as Result of Temperature Swings

EXPERIENCES

Energy Conservation Measures

have forced us to

- Oversize coils to lower airside and waterside pressure drops
- Use variable flow as much as possible
- Coils and heat exchangers operate at part load conditions over 99% of the time, up to 70% below 50%.
 - Low loads usually occur in spring and fall and during unoccupied times

HEATING PART LOAD HOURS

FOR A SAMPLE 600,000 SF LABORATORY

Percent of Full Load

COOLING PART LOAD HOURS

FOR A 600,000 SF LABORATORY

Percent of Full Load

OTHER CONSIDERATIONS

- Central equipment should be capable of operating down to minimum load conditions
 - Consider multiple boilers and chillers for turndown
- Minimum turndown <u>may not</u> be important for Booster/reheat coils and other terminal devices if you accept their on/off mode of operation!

- Coil Selection is Important
- Basic Science
- Coil Selection
- Pumped Coils

$$q = h_c A_s (t_s - t_h)$$

Equation 2 from 2017 ASHRAE Handbook of Fundamentals, Chapter 4

where:

```
q = energy transfer (BTU/Hour)
```

h_c = convective heat transfer coefficient (BTU/Hr-SF-F)

 A_s = heat transfer area (SF)

t_s = surface temperature (°F)

t_h = fluid temperature (°F)

$Nu = hL_c/k = f(Re_{Lc}Pr)$

```
Nu = Nusselt number
Where:
     h = convective heat transfer coefficient
     Lc = characteristic length
     Re_{lc} = Reynolds number = \rho V_{lc}/u = V_{lc}/v
          = fluid velocity
     Pr = Prandtl number = c_p u/k
          = fluid specific heat
     Cp
          = fluid dynamic viscosity
     u
          = fluid density
          = kinematic viscosity = u/ρ
     V
     k
          = fluid conductivity
```

FLUID FLOW IN TUBES

Fig. 20 Typical Dimensionless Representation of Forced-Convection Heat Transfer

FLUID FLOW IN TUBES

Figure from 2017 ASHRAE Handbook of Fundamentals, Chapter 4

KINEMATIC VISCOSITIES VS TEMPERATURE

Table 1 Kinematic Viscosity of Fluids (x 10⁻⁵ ft²/sec)

Water Temp. (°F)	Water	30% by vol. of EG	40% by vol. EG	30% by vol. PG	40% by vol. PG
40°F	1.72	4.324	7.078	5.228	8.268
100°F	0.758	1.568	1.958	1.91	2.318
180∘F	0.421	0.643	0.796	0.719	0.870

MINIMUM TUBE VELOCITIES FOR TURBULENT FLOW

Table 2 Minimum Tube Velocity (fps) For Turbulent Flow						
Fluid/ Temperature (°F)	40°F	100°F	180°F			
Water	1.44	0.63	0.35			
30% EG	3.61	1.31	0.54			
40% EG	5.91	1.63	0.66			
30% PG	4.36	1.59	0.60			
40% PG	6.90	1.94	0.73			

AIRSIDE MINIMUM VELOCITIES

$$Nu = hL_c/k = f(Re_{Lc}Pr)$$

```
Where: Nu = Nusselt number
          = convective heat transfer coefficient
               (BTU/Hr-SF-F)
     Lc = characteristic length
     Re_{LC} = Reynolds number = \rho V_{LC}/u = V_{LC}/v
     V_{1c} = Flat plate velocity
     v = kinematic viscosity = u/ρ
     u = fluid dynamic viscosity
     ρ = fluid density
```

AIRSIDE MINIMUM VELOCITIES

Turbulent flow starts with Re between 300,000 and 500,000 The more irregular the fin shape, the lower the number Also a function of fin spacing

Figure from 2017 ASHRAE Handbook of Fundamentals, Chapter 4

Table 3 Kinematic Viscosity of Air (v) ft²/sec at various temperatures

Effective Coil Area

Function of Face Velocity for 1 Row Booster Coil (4.5" depth)

Effective Coil Area

Function of Face Velocity for 4 Row Coil (7.5" depth)

Effective Coil Area

Function of Face Velocity for 8 Row Coil (12.5" depth)

CONCLUSIONS

- Coil depth is a factor
- 1 row coils should only be used for small booster coils and should not be used for cooling or preheat coils, especially for VAV systems

- Coil Selection is Important
- Basic Science
- Coil Selection
- Pumped Coils

RECOMMENDED MINUMUM COIL FACE VELOCITIES (FPM)

COIL DEPTH	1 ROW	2 OR 3 ROWS	4 ROWS	6 ROWS	8 ROWS
COOLING	N/R	300	300	250	200
PREHEAT	N/R	400	300	250	200
REHEAT	300	200	200	200	200

What have we learned so far?

- Coil Selection is Important
- Basic Science
- Coil Selection
- Pumped Coils
- Minimum tube velocities are important
 - Function of fluid type and temperature
 - Flow will become laminar at some point as flows decrease.
 - Based on load profiles, attempt to pick coils with turbulent flow for most of the hours at part load conditions. (Down to as far as possible)
 - With 6 fps, turndown is only 4:1 for cooling, up to 10:1 for heating
- Minimum face velocities are important
 - Function of air temperature and coil depth

RECOMMENDED MINIMUM TUBE VELOCITIES

RECO	MMENDED	MINIMUM TUBE	VELOCITIES (FPS)
	COOLING	LOVA / TENAD LIE ATING	CTD TENAD LIEATING

	COOLING 40-45 ⁰ F	LOW TEMP HEATING 90-140 ⁰ F	STD TEMP HEATING 160-200°F
WATER	1.5 - 2	1.0 - 1.5	0.4 - 0.6
30% EG/PG	4 - 5	1.5 - 2	0.6 - 1
40% EG/PG	AVOID	2 - 3	0.8 - 1.5

2016 ASHRAE Systems Handbook – Ch. 23 and 27 discuss coil selection. Max. tube velocity = 6 fps for copper

ASME Std AG-1: 2 fps min.

AHRI Std 410: 1 fps min., Re min = 3700

RECOMMENDED MINIMUM COIL VELOCITIES (fpm)

COIL DEPTH	1 ROW	2 OR 3 ROWS	4 ROWS	6 ROWS	8 ROWS
COOLING	N/R	300	300	250	200
PREHEAT	N/R	400	300	250	200
REHEAT	300	200	200	200	200

(GIVEN: max. airflow, EAT/LAT conditions)

- Step 1 of 7: Determine airside and water side turndown rates.
 - Sum minimum VAV box settings
 - Account for damper closures (fire/smoke, unoccupied zone dampers, etc.)
 - Operating both AHUs when parallel units are used for 100% or partial redundancy
 - Water side turndown should be as much as possible given 6 fps max.

- Step 2: Determine number of coils and coil sizes using maximum and minimum face velocities
 - Maximum face velocity for cooling coils should be less than published coil carryover values (<550 fpm)
 - No maximum face velocity for heating coils.
 - Practical limit is 900 fpm for AHU coils and 1500 for reheat coils
 - Determine minimum face velocity based on system turndown.
 - Determine if multiple coils/AHUS are required or if shutoff or face and bypass dampers are required to keep face velocity above minimum values.

- Step 3 (Optional): For <u>custom</u>
 AHU coils, consider
 - Selecting number off tubes in coil face to achieve proper circuiting
 - Limiting the size of coils to improve drain pan collection efficiency, ease of maintenance and ease of coil replacement.
 - For ease of coil replacement, consider limiting the coil length to about 120".
 - Consider multiple, staggered coils if length exceeds 120".

- Step 3a: Select coil height based on number of tubes, tube size, and circuiting to achieve desired tube velocity
 - · Number of tubes in coil face is a function of coil height
 - Tube sizes (3/8", 1/2", 5/8")
 - Circuiting Options
 - Full or 1 All tubes in face have equal full.
 - Fraction circuiting (0.25, 0.33, 0.5, 0.75) Multiple tubes are circuited together to increase tube velocity
 - 1.5, 2 (double), and 3 (triple) circuiting Flow is divided to coil to reduce tube velocity

Number of coil tubes = coil height (in.) / 1.5"
 per tube

Total no. of tubes = tubes/coil ht. x no. of rows

Tube velocities vs tube sizes

TUBE VELOCITY PER TUBE FOR 1 GPM

Tube Size (OD in.)	Tube ID (in)	Tube Area (sf)	FPS / 1 GPM
3/8	0.035	0.000506944	4.395
1/2	0.402	0.000881944	2.526
5/8	0.527	0.001513889	1.472

¹ gpm = 0.00222801 ft³/sec.

- Step 3b: Based on coil height and desired face area, determine
- Coil length (in) =
 Coil area sf x 144 / coil height (in)

- Step 4: Based on coil height and initial guess at circuiting, determine
- Select tube size (diameter)
- No. of circuits =
 No. of tubes in coil height x circuiting number (percentage)
- Flow per circuit = Total coil flow / no. of circuits
- Estimated tube velocity = gpm/circuit x fps/gpm
- Repeat above steps to get desired tube velocity (6 fps max.)

- Step 5: Start using coil selection software. Select tube and fin materials, and if any coatings are to be used.
 - Notes
 - Booster coil software will preselect materials for you and limit coil sizes.
 - Certain material options may be fixed by coil manufacturer

- Step 5a: Enter air flow, EAT, and EWT conditions
 - Consider using adjusted EWTs when using pumped coils
- Step 5b: Enter either LAT conditions, total MBH, or water flow, but not more than one
 - Best option is to enter water flow based on desired temperature change
 - Consider using higher water flows when using pumped coils to maintain minimum tube velocities

- Step 5c: Enter first guess of coil selection
 - Coil type
 - Coil size
 - No. of rows (1 through 12)
 - Circuiting (quarter, third, half, three-quarter, full, 1.5, double, triple)
 - Tube diameter (3/8", 1/2", 5/8")
 - Tube wall thickness (0.016" to 0.049")

- Step 5c: Enter first guess of coil selection
 - Fin Thickness (0.006" to 0.01")
 - Fin material (aluminum, copper, SS)
 - Fin shape (flat, wave, enhanced wave)
 - Fin coatings for corrosion resistance (baked phenolic, sprayed epoxy)
 - Casing material (Galvanized or SS)
 - Header connection sizes
 - LH or RH end connections

- Step 6: Adjust water flow or circuiting to maintain minimum tube velocities
 - Adjust circuiting first
 - Fine tune by minor flow adjustments
 - More options with pumped coils
 - Pumped coil flows will may be higher than system flows

- Step 7: Adjust above inputs to achieve desired LAT/MBH
 - Consider fin spacing/type as first adjustment
 - Adjust water temps for pumped coils
 - Consider no. of rows if capacity needs a major adjustment

Coil Selection Summary

- Determine minimum flow conditions
- Use iterative process to achieve maximum desired capacity while maintaining turbulent flow at minimum flow conditions

Coil Selection Summary

- Look at ways to reduce heat exchange areas at low loads
 - Multiple heat exchangers, AHUs, etc.
 - Some coils (Especially 8 row cooling coils) can have multiple headers to split the coil vertically. Each header with separate control valves can be sized for 50% flow thus improving the turndown.
 - 1/3 + 2/3 or 2 @ 50% heat exchangers with separate control valves

Coil Selection Example

- Coil Selection is Important
- Basic Science
- Coil Selection
- Pumped Coils

Given:

Air flow: 10,000 cfm

EAT: 80°F DB/67°F WB

Desired output: 52°F DB / 51.8°F WB (462.8 MBH)

EWT: 42°F

Ideal water △T: 14-16°F

Step 1:

Air Turndown: 40% or 4,000 cfm

Ideal 100% Flow: 57.9 - 66.1 gpm based on △T

Step 2:

Coil size: 1 coil at 20 sf, 500 fpm @ 100% flow

200 fpm @ 40% flow)

Coil Selection Example

Step 4:

Determine circuiting

- Based 36" high coil, no. of tubes in face = 36" / 1.5" = 24 tubes
- With 5/8" tubes, 1 gpm = 1.472 fps
- With full circuiting, tube velocity = 1.472 fps x 66 gpm/24 tubes = 4.0 fps
- Tube velocity @ 25% flow = 1.0 fps (A bit too low)
- Try half circuiting, tube velocity = 1.472 fps x 66 gpm
 /24 x 0.5 tubes = 8.1 fps
- Tube velocity @ 25% flow = 2.0 fps
- Try half circuiting

Coil Selection Example

Step 5:

Enter data:

- Airflow, EAT, EWT, water flow Input airflow, EAT, EWT, water flow
- COIL type, coil size
- Select Materials
 - 5/8" x 0.020" thick tubes
 - 6 rows, 10 fins/inch wave pattern
 - 0.006" fin thickness
- Circuiting: Half Circuited

Steps 6 & 7:

- Run results and adjust inputs for desired tube velocities and LATs at 100% and minimum airflow conditions
- Re-iterate as required

Coil Selection Input –

100% Flow Final Selection

100% Flow Final Selection Output

40% Airflow and min. tube velocity Final Selection Output

Is there another way to maintain minimum tube velocities without the high pressure drop or Provide minimum tube velocities below 33% load?

- Coil Selection is Important
- Basic Science
- Coil Selection
- Pumped Coils

Is there another way to maintain minimum tube velocities without the high pressure drop or Provide minimum tube velocities below 33% load?

- Coil Selection is Important
- Basic Science
- Coil Selection
- Pumped Coils

YES! USING PUMPED COILS!

Coil pumps can be used to maintain minimum tube velocities, even when system flows vary.

PUMPED COIL ARRANGEMENT

HOW TO USE PUMPED COILS

Step 1: Select coil size, rows, and circuiting for desired pressure drop at full load conditions

Step 2: Select pump flow based on maintaining minimum tube velocities.

Flow may be higher or lower than full load system flow based on overall system ΔT .

Step 3: With flow and circuiting fixed, select coil fins and EWT to meet desire full load performance.

HOW TO USE PUMPED COILS

Step 4: Use mixing equation to determine overall system flow, LWT, and $\triangle T$.

Step 5: Select control valve based on system flow, not coil flow.

PUMPED COIL CONTROL

Q (BTUH) = U • A • LOG($\Delta T/\Delta T$)

- U is fixed by maintaining tube velocity
- Area is fixed by selecting coil size, tubing, and circuiting
- Capacity is controlled by varying the LOG(△T/ △T) or blending water temperatures up/down.

MIXING EQUATION

SYSTEM ENERGY = COIL ENERGY

$$Q_{sys} = GPM_{sys} \bullet 500 \bullet (T_{sys in} - T_{sys out})$$

$$Q_{coil} = GPM_{coil} \bullet 500 \bullet (T_{coil in} - T_{coil out})$$

$$T_{coil out} = T_{sys out}$$

$$GPM_{sys} = GPM_{coil} \quad \frac{(T_{coil in} - T_{coil out})}{(T_{sys in} - T_{coil out})}$$

SAMPLE COIL SELECTION

SAMPLE COIL SELECTION @

100% LOAD

Specification								Besults					
System ID Elevation Sea Level		Sy	System 1 Pressure In Hg 29.92		ty			gHeight ich 2.0	IITL inch 80.0	Con Barrier Con		W Aluminum 0.020 20.0	
Air Flow		Vet	Face Velocity fpm 500		Side Dry/Wet Temp *F / *F 80.0 / 67.0		Outside Fouting hr-ft2-91/8tu 0.0000 Selection Results		Temp *f 42.0		er Side	Inside Fouling hr-ft2-4F/8tu 0.0000	
					Lvg	Lvg	Lvq	-					
	Rows	Fin Space / in	Circuit	Air Friction In H2O	Dry Temp	Wet Temp	Water Temp	Flow Rate gpm	Press Drop Ft H20	Tube Vel. ft/sec	Heat Load HBH	Rows Calc	Ent ACF
1	6	10.00	Full	0.91	52.0	51.8	55.8	66.0	6.4	2.9	4.55E+	6.04	10453

SAMPLE COIL INPUT

FOR 40% LOAD

SAMPLE COIL SELECTION

FOR 40% LOAD Pump ON with loads below 40%

FPS TUBE VELOCITY

66 GPM FOR 100% FLOW

•

WHEN TO USE PUMPED COILS

Use pumped coils when

- When precise temperature control is required throughout full operating range (below <u>+</u>33% load).
- Precise temperature zones (<<u>+</u>0.5°F)
- Preheat coils when EAT is < 32°F

NOTE – Increased flow and tube velocity can be achieved without pumps by adjusting EWT UP.

CONCLUSIONS

- Be aware of system turndown and no. of hours at part load conditions
- Be aware of minimum tube and coil face velocities
 - Avoid high concentration of glycols for cooling coils
- Coils can be picked for 4:1 turndown at best
- Pumped coils are a good option to maintain tube velocities at low loads

QUESTIONS?Discussion

GENE NELSON, PE gcnelson65@gmail.com